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ABSTRACT
This paper describes SRI’s 1997 broadcastnews transcription system
used for the 1997 DARPA H4 evaluations. Our system had several
novel components. These include automatic segmentation of en-
tire broadcast shows, word-internal and crossword acoustic models
robustly estimated with a new Gaussian Merging-Splitting (GMS)
algorithm, the use of trigram language models (LMs) in lattices in-
stead of for rescoring N-best lists, and an LM pruning algorithm that
allows efficient representation of high-order (like 4- or 5-gram) LMs.
We briefly describe these features and give comparative experimental
results. We achieved a 18.7% relative improvement in performance
on our 1996 H4 partitioned evaluation (PE) development test set as
compared to our 1996 H4 PE evaluation system.

1. Introduction
In recent years there has been increasing interest in develop-
ing large-vocabulary continuous speech recognition (LVCSR)
algorithms for speech found in real sources such as telephone
conversations and broadcast news. Broadcast news, in partic-
ular, has been the test bed for the DARPA continuous speech
recognition (CSR) evaluations over the last few years, and
represents a significant challenge to speech recognition re-
searchers.

Many interesting problems are associated with the automatic
recognition of broadcast news. One problem is that the speech
is in the form of a single long stream, whereas typical au-
tomatic speech recognition (ASR) systems are designed to
process sentence-length units of speech. ASR systems work
best when the segment to be recognized is homogeneous with
respect to speaker and acoustic condition. It is also desir-
able, both for ASR and for speechunderstanding, for the
segments to correspond to linguistic units such as sentences
or phrases. An interesting challenge is to develop algorithms
that can automatically segment a long stream of speech ac-
cording to such criteria. Another problem with broadcast
news is the many different variabilities of speech, such as
conversational speech, noisy speech, speech in the presence
of music, non-native speech, or a combination of these vari-
ations. In addition, these variations are constantly changing
from one to another, making the ASR problem very challeng-
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ing. Since automatic recognition of broadcast news can be
used for applications such as information archiving and re-
trieving, focusing effort on this task serves the dual purpose
of improving technology and opening up interesting LVCSR
applications.

In this paper we describe SRI’s 1997 broadcast news tran-
scription system. We start with an overview of the system,
and then describe the individual components. Comparative
experimental results are given to show the benefit of new ap-
proaches. The techniques we developed in 1997 resulted in
a 18.7% improvement in performance on our 1996 H4 par-
titioned evaluation (PE) development test set as compared to
our 1996 H4 PE evaluation system.

2. Overview of SRI’s H4 System
The 1997 DARPA H4 evaluation test data was in the form
of a single 3-hour-long file. Different broadcast shows, or
segments of these shows, were spliced together to create this
file. We processed the data in the file by using our broadcast
news transcription system as follows:

1. Acoustic Segmentation: The 3-hour waveform was
automatically segmented by recognizing the waveform
with a fast context-dependent (CD) phonetically tied
mixture (PTM) parallel male/female recognition system,
and then segmenting at regions where the system hy-
pothesized background or silence. In addition, we seg-
mented at all gender changes located by the male/female
recognition system. The segments were clustered into
acoustically similar groups using bottom-up agglomera-
tive clustering.

2. First Pass Recognition: The segments were recog-
nized using gender-dependent, speaker-independent (SI)
Genonic hidden Markov models HMMs [1] trained using
a new Gaussian Merging-Splitting (GMS) algorithm [2],
and the 100 hours of H4 training data. This recognition
was done with a 48,000-word bigram language model.

3. Adapting Models: The data from each segment cluster
was used along with the hypotheses generated in Step
2 to adapt the gender-dependent HMMs to each test



segment cluster. We used maximum-likelihood (ML)
transformation-based adaptation [3, 4], with a block-
diagonal affine matrix transformation of the HMM mean
vectors [5].

4. Trigram Lattice Generation : The test-segment-cluster
adapted models were used to create bigram lattices,
which were then expanded to trigram lattices.

5. Recognition from Trigram Lattices: The gender-
dependent SI models were used to run recognition for
all the segments using the trigram lattices. Ideally, we
would have used the test-segment-cluster adapted mod-
els during this stage, but for logistic reasons we did not
do this during the evaluations. Since trigram lattices are
used, the hypotheses in this step are significantly better
than those generated in Step 2.

6. Adapting Models and Creating N-Best Lists: The
recognition hypotheses from Step 5 were used to adapt
models for each of the test segment clusters. Both a block
diagonal affine matrix transform of the HMM means
and a variance scaling transform [4, 5] were used in
this step. The adapted models were then used to run
forward-backward recognition on the trigram lattices to
create word-dependent n-best lists.

7. Adapting Crossword Models: The hypotheses from
Step 5 were used to adapt crossword models which were
trained using the GMS algorithm. Again, both mean and
variance adaptation were used, as in Step 6.

8. Rescoring N-Best Lists: The n-best lists generated
in Step 6 were rescored using the test-segment-cluster
adapted crossword models generated in Step 7. The
n-best lists were also rescored with a 48,000-word vo-
cabulary 5-gram LM.

9. Combining Scores: Finally, the scores from four differ-
ent knowledge sources were linearly combined to give
the final hypotheses. The knowledge sources were

(a) Non-crossword test-segment-cluster adapted
Genonic HMMs

(b) Crossword test-segment-cluster adapted Genonic
HMMs

(c) 48,000-word vocabulary 5-gram LM

(d) Number of words in hypotheses (used to penalize
word insertions)

To measure performance during development of our system,
we used the 1996 H4 PE development test set. In the PE test,
the speech is hand-segmented into segments homogeneous
with respect to speaker and acoustic condition. Since the
1997 H4 evaluation was an unpartitioned evaluation (UE),

where no hand-generated segments were given, there is a
mismatch between the data we used for development and the
final evaluation data. However, because only the segmentation
step is particular to the UE, we believe that we can get a good
estimate of the performance of our system by using the 1996
PE development test set. In particular, the word error rate for
the 1997 system was 26.1% as compared to 32.1% with our
1996 system, which is a 18.7% relative improvement.

3. Feature Extraction
The front-end feature extraction was based on mel-frequency
cepstrum processing. The speech was hamming-windowed,
with a 25.6ms window advanced every 10 ms. Each frame was
represented by 12 mel-frequency cepstrum coefficients, the
log energy, and their first- and second-order time derivatives
(delta and delta-delta features), for a resulting 39-dimensional
feature vector.

4. Vocabulary and Dictionary
A 48,000-word vocabulary was selected by choosing the most
frequent words from the 1996 H4 language model (LM) train-
ing texts and adding all words that occurred at least twice in the
1996 acoustic training transcripts. This vocabulary resulted
in an out-of-vocabulary (OOV) rate of 0.9% on the 1996 H4
development test set. We used version 0.3 of the CMU dictio-
nary modified at SRI to make sure that pronunciations existed
for all the 48,000 vocabulary words.

5. Acoustic Segmentation and Clustering
Our acoustic segmentation algorithm is a modification of the
algorithm we used in 1997 to segment long PE segments [6].
In the 1996 PE data,each stream was guaranteed to contain
only speech, and to come from a single speaker. Thus, the
problem was simply to chop the stream into shorter segments,
which was done by segmenting at non-speech regionshypoth-
esized by Viterbi beam search (with a low pruning beamwidth
for fast recognition) using a gender-independent CD PTM
recognition system.

For the UE data, the stream contains speech and also many
long non-speech regions. In addition, there are no given
speaker boundaries. We modified our previous algorithm
to use a parallel male/female CD PTM system for recogni-
tion, and included 5 minutes of non-speech data from the H4
acoustic training data to train the non-speech model. The seg-
mentation algorithm was modified to remove any non-speech
segments longer than 1 second, and then chop at the remain-
ing non-speech segments to create nominally 10-second seg-
ments. In addition, a new segment was created whenever
a gender change occurred. The resulting segments are thus
nominally 10 seconds long, and are labeled by gender.

We tested the segmentation algorithm with the 1996 H4 de-



Segment Models
Type SI Cluster-

Adapted

PE 37.9 35.5
UE 39.4 37.6

Table 1: Word error rates (%) for the PE and UE segments

velopment test data. For four broadcast shows, both PE and
UE index files were provided. We ran recognition on the
PE and UE segments for these shows using a 20,000-word
bigram LM, and non-crossword gender-dependent Genonic
HMMs. Both SI models and segment-cluster-adapted mod-
els were used. Table 1 gives word error rates for the PE
and UE recognition runs. For the SI models, the word error
rate was 1.5% (absolute) worse for the UE than for the PE.
However, for the adapted models this difference increased
to 2%, possibly because a single UE segment may contain
speech from multiple acoustic conditions or speakers, giving
segment clusters that are not acoustically homogeneous, and
thus degrading the adapted models.

The segments were clustered using bottom-up agglomerative
clustering as in our 1996 system [6, 7]. However, we modified
the way in which the distances were computed between the
segments. In our previous work [6, 7], a separate Gaussian
mixture model (GMM) was trained for each segment, and the
distance between the segments was given by the symmetric
relative entropy computed using these GMMs [6, 7]. Since
some segments have very little data, it is difficult to estimate
a full GMM for each segment. We modified our approach
by training a single GMM for all the segments, and using a
separate mixture weight distribution for each segment to these
shared Gaussians. The distance between two segments is then
defined as the weighted-by-counts increase in entropy of the
mixture weight distribution due to clustering two segments.
This is identical to the approach we use for HMM state clus-
tering [1]. The performance of the new clustering algorithm
was found to be slightly better than that of the approach we
used last year.

6. Acoustic Modeling
For the 1997 broadcast news transcription system, we trained
gender-dependent Genonic HMM models [1] using only the
nominally 100 hours of H4 acoustic training data. This is a
deviation from our 1996 system, where we adapted models,
trained with the Wall Street Journal or Switchboard training
data, to each of the seven individual acoustic focus conditions
defined by the H4 evaluation committee [8], using the first 50
hours of acoustic training data. This creates seven condition-
specific models for each gender. In1996, we participated in
the PE test, where the acoustic focus condition was given for
each test segment. We believed that adapting models to each

Models Word
Error (%)

Condition-
Specific 41.12
Single H4
Model 38.61

Table 2: Comparison of condition-specificmodels vs. a single
H4 model

focus condition would give better performance than a single
H4 model since the models would be tuned to the specific
focus conditions. After the 1996 evaluations, we trained a
single gender-dependent H4 model using the first 50 hours
of training data. This approach was taken by BBN in the
1996 evaluations [9]. Table 2 gives recognition word error
rates with the 20,000 word bigram LM we used for the 1996
evaluations for the male subset of the 1996 development test
set. The single H4 model gave a relative 6.1% lower word
error rate than the condition-specific models. Since training a
single H4 model is also easier, we chose to use this approach
for our 1997 broadcast news system.

We have recently developed the GMS algorithm to train state-
clustered HMMs. We use Genonic HMMs [1], whereeach
HMM state cluster shares the same set of Gaussians (or
Genone), and a separate mixture weight is used foreach
state. The GMS algorithm uses iterative Gaussian splitting
and training to generate the required number of Gaussians per
Genone. Ateach stage of training the Gaussians are itera-
tively merged until all Gaussians have at least a threshold of
data. For the HMM parameters, this technique was found to
give more robust estimates than our previous training algo-
rithm. The GMS algorithm is described elsewhere in these
proceedings [2].

We used the GMS algorithmto train a separate non-crossword
H4 model for each gender. We used7761 triphones for the
males and 6723 triphones for the females. Since the GMS al-
gorithm guarantees robust parameter estimation, we explored
HMM structures with a very large number of Gaussians per
Genone (and fewer Genones) as compared to what we used
previously. In particular, we used 535 Genones for the males
and 569 Genones for the females. For both cases, we used 128
Gaussians per Genone. Based on experiments with the GMS
algorithm, we have some evidence to support the hypothesis
that for a fixed number of Gaussians, better performance is
achieved by using fewer Genones and more Gaussians per
Genone as compared to our previous models where we used
more Genones and fewer Gaussians per Genone. An expla-
nation for this is given in [2].

We used Genonic crossword models to rescore n-best lists.
The triphones in the crossword models are word-position in-



SI Adapted

31.78 29.97

Table 3: Comparison of SI and mean-adapted models

dependent. There were 16,728 triphones for the males and
13,368 triphones for the females. Due to a lack of time, we
did not experimentally select the HMM structure for the cross-
word HMMs, but decided to use about 2000 Genones and 32
Gaussians per Genone.

7. Test-Segment-Cluster Adaptation

As in our 1996 system, we adapted the SI HMMs toeach test-
segment-cluster by using unsupervised transcription-mode
ML transformation-based adaptation [3, 4]. The transfor-
mations were a block diagonal affine matrix transform of the
HMM mean vectors [5], and a scaling transform for the vari-
ance vector [4, 5]. We used three separate transforms, one of
them being tied to the non-speech (silence) model. The other
transforms are tied to phone classes determined by a human
expert. Table 3 shows the performance gain from mean adap-
tation for the 1996 H4 development test set. For these runs,
we used trigram lattices, which we recently implemented [10].
From the table, we see a relative 5.7% improvement from us-
ing adaptation. This is less than the 8.3% improvement we
reported using last year’s system [6]. This could be explained
by the fact that our SI models have improved over last year.
Thus, the further improvement possible from adaptation may
decrease.

We also experimented with iterative adaptation. We tried
two different approaches. In the first, we used the hypothe-
ses generated by the previously adapted models to re-adapt
the models iteratively for five iterations. At each stage we
use a constant number of three transforms. In the second
approach, we started with a single transform, increasing it to
two, three, six, and eleven transforms in subsequent iterations.
In addition, in this approach, adaptation is stopped if the tran-
scriptions do not change from one iteration to the next [11].
Table 4 shows that we did not achieve any improvement by
using iterative adaptation, and hence we did not use it in our
final system.

Number of SI Adapted Models
Transforms 1 2 3 4 5

Fixed at 3 31.8 30.0 29.9 29.9 29.9 29.8
Variable 31.8 30.0 30.0 30.1 30.1 30.1

Table 4: Effect of iterative adaptation

8. Trigram Lattice Generation
In previous years, we have used trigram and higher-order LMs
to rescore n-best lists [12, 13, 6]. However, it is well known
that trigram LMs give a drastic improvement over bigram
LMs. Thus, it makes sense to use them earlier in the search.
This year, wedeveloped new lattice-based search capability by
implementing a new bigram lattice algorithm and algorithms
to expand these to trigram lattices [10]. We achieved about
5% relative improvement in performance on a male subset of
the 1996 H4 development test set by running recognition from
our new trigram lattices as compared to trigram rescoring of
n-best lists generated using our 1996 H4 PE evaluation system.

9. LM Description
Three different LMs were used in the system. The first is a
bigram LM trained using the 1996 H4 LM training corpus
and the first 50 hours of H4 acoustic transcripts. This LM
is used to create a word graph to run recognition in Step 2
of the system to get hypotheses for ML adaptation in Step
3. The trigram LM used in Step 4 for the trigram lattice
expansion was trained using the 1996 H4 LM corpus, the first
50 hours of H4 acoustic transcripts, the 1995 H3 LM training
corpus (which was drawn from North American Business
News (NABN) texts), and the Switchboard-I training corpus.
For the final rescoring LM used in Step 8, a 5-gram LM was
estimated using the 1996 H4 LM corpus and the 1995 H4 LM
training corpus (which was also drawn from NABN texts, but
included non-financial data and a later cutoff date than the
1995 H3 training data), and a trigram LM was estimated for
the first 50 hours of H4 acoustic transcripts and Switchboard-I.
The 5-gram LM was pruned using a newly developed entropy-
based pruning technique that drastically reduces the number
of n-grams in the model without altering its performance [14].

In all the LMs,multiple corpora were used by training separate
LMs for each and then interpolatingthe language models. The
interpolation weights were estimated so as to minimize the
perplexity on the 1996 development test transcriptions. All
LMs used Katz backoff [15] and Good-Turing discounting.

10. N-best List Rescoring
The trigram lattices generated in Step 4 were used to
generate n-best lists using the test-segment-cluster-adapted
non-crossword models and the word-dependent n-best algo-
rithm [16]. These n-best lists were then rescored with 5-gram
LMs, test-segment-cluster-adapted crossword models, and a
word insertion penalty. For crossword rescoring, the n-best
lists were represented in the form of a tree lattice, resulting in
very fast and memory-efficient rescoring. In addition to these
three knowledge sources, we used the scores from the test-
segment-cluster-adapted non-crossword models. The scores
from each knowledge source were linearly combined, with the
combinationweights being found by a grid search to minimize



Knowledge Sources 1997 System 1996 System

Choose highest combined score

1996 trigram, 29.0 32.5
non-crossword
1996 4-gram, 28.4 32.1
non-crossword
1997 5-gram, 28.3 -
non-crossword
1997 5-gram
non-crossword, 27.0 -
crossword

Choose lowest expected word error

1997 5-gram
non-crossword, 26.8 -
crossword

Table 5: Word error rates with different knowledge sources

word error on the 1996 PE development test set. Finally, the
combined scores of the N-best hypotheses were normalized
to estimate posterior probabilities foreachhypothesis, which
in turn were used to estimate expected word error counts for
eachhypothesis. The hypothesis with the lowest expected
word error count was chosen to be the output of the recogni-
tion system [17].

Table 5 gives the word error rates using different knowledge
sources. In all cases, we used word insertion penalty. The
table gives the word errors for both the 1996 and 1997 systems.
The difference in the 1996 and 1997 results for the first two
rows is accounted for by the difference in the acoustic models
used, and the new lattice-search strategies used in 1997. For
all the results in the table, except the last row, we chose the
best hypothesis by picking the one with the highest combined
score. In the last row, we picked the hypothesis with the
lowest expected word error count. The system we used in
1996 gave a 32.1% word error rate (with 4-gram LMs). Our
1997 system gave a word error rate of 26.8% resulting in
a 16.5% relative improvement in performance. The system
we used for the 1997 H4 evaluation was identical to that in
the last row of Table 5 except that the 1997 evaluation system
used automatic acoustic segmentation (Step 1 in the algorithm
description given in Section 2). Our word error rate on the
1997 H4 evaluation data was 20.4%.

11. Retraining with Bug-Fixed Transcripts
After the evaluations, we noticed that there was a bug in the
transcripts we used for training. Our transcripts contained no
pause fillers in spite of their being present in the acoustics.
On closer examination, we found that the NIST BN-filter,
Version 1.11 was hard-wired to delete pause fillers from the
transcripts. We had used the same scripts as we did in 1996,

Acoustic System
Condition Evaluation Bug fixed

F0 12.3 12.3
F1 28.6 27.3
F2 32.0 30.0
F3 31.8 32.0
F4 22.7 21.9
F5 20.2 20.5
FX 43.4 43.1
Total 26.8 26.1

Table 6: Word error rate (%) before and after bug fix for 1996
PE development test set

replacing the older BN-filter with the new version. We did not
go through the process of verifying the resulting transcripts as
our scripts had worked fine in 1996. Another bug we found
was that we incorrectly mapped words from a small fraction
of the sentences to a garbage model we used during training
to segment OOV words.

We corrected these problems and retrained and reran our sys-
tem on the 1996 H4 PE development set and the 1997 H4
UE evaluation set. Table 6 and 7 compare the performance
of the evaluation system and the bug-fixed system across the
different acoustic focus conditions for the 1996 H4 PE de-
velopment test data and the 1997 H4 UE evaluation test data
respectively. The word error rate on the 1996 development
test set using the bug-fixed system was 26.1%. The word
error rate on this test set using our 1996 H4 PE evaluation
system was 32.1%. Thus we achieved a relative improvement
of 18.7%. Part of this improvement can be attributed to the
fact that we used nominally 50 hours of H4 acoustic training
data to train the 1996 system, whereas we used nominally 100
hours to train the 1997 system. However, we observed a very
modest improvement (about 1.5% relative) due to using the
extra data, and most of the improvement can be attributed to
the new techniques reported in this paper. Using the bug-fixed
system, the error rate on the 1997 H4 evaluation test set was
reduced from 20.4% to 20.0%.

12. Summary and Conclusion

For the 1997 SRI broadcast news transcription system, we
developed and utilized several new techniques, including the
GMS algorithm for HMM training, adapted crossword acous-
tic models, a new bigram lattice algorithm and trigram lattice
expansion algorithm, and an algorithm to drastically prune
LMs while maintaining their performance. As a result, we
achieved an 18.7% relative improvement over our 1996 sys-
tem.



Acoustic System
Condition Evaluation Bug fixed

F0 13.6 13.4
F1 20.5 20.1
F2 26.2 25.0
F3 32.4 33.2
F4 24.4 24.8
F5 28.1 28.0
FX 38.1 36.3
Total 20.4 20.0

Table 7: Word error rate (%) before and after bug fix for 1997
UE evaluation test set
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